
Japedo
User Manual

Version: 2.0

Table of Contents
Overview. 1

Setup . 2

Japedo Maven Plugin. 2

Configuration properties . 2

Logging . 5

Representation and Navigation. 6

Java Persistence Perspective . 6

Database Perspective . 10

Design Perspective . 11

Graphical Representations . 12

Linking database and JPA artefacts . 12

Issue Report . 14

Comparing databases and applications . 14

Overview
Japedo is a tool for generating documentation of the complete persistence layer of a Java
application. It creates documentation of the database scheme as classical database documentation
tools do and in addition a full documentation of the JPA layer based on Java code analysis. If Java
sources are available they will be scanned for persistence information and JavaDoc comments. This
is the preferred mode to use Japedo as the JavaDoc represents a unique source of documentation
for the persistence layer. If sources are not available the binaries are scanned but JavaDoc
documentation will not be available. Brought together, it gives complete information about the
persistent domain objects, their relations and persistent properties, their representation in the
database scheme together with all properties of tables and columns. Together with descriptions of
the persistent items the generated documentation is not only interesting for database admins but
also for software developers, system analysts and other roles that need to understand the basic
principles of the application.

 This icon marks features that are only available in the premium version of Japedo. A license
for the premium version can be purchased on the Japedo web site.

1 Japedo User Manual v 2.0

https://www.logitags.com/japedo

Setup
This tool requires Java version 11 or higher.

The distribution zip contains the Japedo jar library, the license, a configuration file and this user
manual. Unzip into a directory and adapt the configuration file japedoConfig.xml as described
below. The tool is started with:

java -cp japedo.jar;<path-to-database-driver> com.logitags.japedo.core.Main

The database driver can also be added to the dependencies property, see below, if this property is
present (meaning if sources are analyzed together with the database)

The free basic version includes a trial license for the premium version which is valid for seven
days. If you like the tool you can purchase a one year license for the premium version on the japedo
website. Licenses are always node-locked on a per-day basis. Once installed on one machine it will
be valid only for this machine for that very day. The license can be switched to another machine on
the following day.

Japedo Maven Plugin
If your persistence project is a Maven project, the easiest way to integrate Japedo is with the Japedo
Maven plugin. This version of Japedo requires Japedo Maven plugin in version 1.3 or higher. Please
see the documentation for the configuration.

Configuration properties
Most configuration properties have defaults and are optional.

Property Description Default

<version> Version of the xsd file. Fixed to 2.0

<properties><outputDir
ectory>

directory where Japedo will generate the
documentation

current directory

<properties><outputFil
ename>

name of the generated html file in outputDirectory japedoreport

<properties><logLevel> log level (DEBUG, INFO, WARN, ERROR) INFO

<properties><longDescr
iptionTarget>

If entity attribute descriptions don’t fit into the table
column, they can be displayed in a POPUP window
or in the lower right PANEL.

POPUP

<properties><proxyHost
>

proxy host name (if any)

<properties><proxyPort
>

proxy port

Japedo User Manual v 2.0 2

https://www.logitags.com/japedomavenplugin

Property Description Default

<properties><showAttri
butesOfHierarchy>

flag for indicating that the entity attribute table
should display also inherited attributes from super
classes.

false

<properties><showCount
s>

flag to count and display number of entities, tables
etc.

false

<properties><prettyPri
nt>

flag if the generated data files contain line breaks and
indentations

false

<application name> A name to provide a short identification for the
application on which japedo is applied. The
expression $2023-12-30T11:15:19Z is resolved to the
current date in format YYYYMMdd.

Japedo Persistence
Documentation

<application><descript
ion>

A description of the application. Any optional
comment or text. Use a CDATA element to include
html tags

<application><java><ch
arset>

the charset to be used to parse the sources UTF-8

<application><java><bi
naries>

List the compiled binaries of the application here.
The analysis of the sources require a compilation,
therefore the application and all dependencies of the
application must be made available to Japedo. If the
database is analyzed together with the sources, the
driver binary can be listed here too. Dependencies
could be provided in various formats as a semicolon-
separated list:

• directories of .class files (exploded binaries)

• .jar libraries of the compiled classes

• .war files

• a directory mixing the above

<application><java><so
urces>

the sources of the application as a semicolon-
separated list. If not set, Japedo scans the binaries for
persistence and entity information. If neither sources
nor binaries are given, java analysis is skipped and
only database documentation is generated. The
source code can be provided in many formats:

• one or more .jar files

• one or more .zip files

• directories of .java files (exploded sources)

• a directory mixing the above

3 Japedo User Manual v 2.0

Property Description Default

<application><database
><connectionUrl>

The database connection URL. If not set database
scheme analysis is skipped and only the source code
is analysed.

<application><database
><driverClassName>

database driver class name

<application><database
><nbThreads>

number of threads to use for database inspection
(default is 4)

<application><database
><password>

database password

<application><database
><schema>

the schema name to analyze. Must be defined only
when Japedo cannot detect it itself. Newer jdbc
drivers can resolve the schema name. If the schema
could not be detected and is not given as a
configuration parameter an exception will be thrown.

<application><database
><username>

database user name

<application><ignoredI
ssues>

comma separated list of unique issue numbers that
shall be ignored. This property can not be set when
<application><dataFile> is set

<application><dataFile
>

a Japedo data file from a previous execution (only
supported in premium version). It is also possible to
define a directory. Then all files ending with -app.js
are read

 An execution of Japedo can analyse multiple applications/databases at the same time. These
are configured in element <applications>. An application must have a unique name and can be
either configured by the <java> and/or <database> element or by the <dataFile> element, which
defines the full path to the application file of a previous execution of Japedo. The *-app.js file is
created in the output directory. In the html page that Japedo creates these applications can then be
compared. This may be useful if you want to compare two different installation environments or
two release versions of an application.

Japedo User Manual v 2.0 4

Logging
Japedo uses java.util.logging for logging messages during documentation generation. Japedo uses
only log levels DEBUG, INFO, WARN and ERROR which can be set in japedo.properties. Of cause also
other levels from java.util.logging.Level could be configured. It is also possible to completely
configure logging formats, handlers and other parameters by providing an own configuration class
or logging properties file. These must be specified in system properties java.util.logging.config.class
or java.util.logging.config.file. For more information consult Java logging documentation.

5 Japedo User Manual v 2.0

https://docs.oracle.com/en/java/javase/11/core/java-logging-overview.html

Representation and Navigation
The main menu includes a menu item for configuring some general settings and a menu item for
switching between the different applications if Japedo has been executed with multiple
applications.

The results of database and Java persistence documentation are represented as one html page in
the configured output directory. When displaying this page in a browser it will look similar to the
representation of JavaDoc. On the left side are two windows with the general database and Java
persistence artifact types in the upper and the special artifacts of the selected type in the lower
window.

On the right side are two windows which display the details of a selected artifact. When selecting
an artifact in the lower left window, the details will be displayed in the right windows.

Generally whenever clicking a link:

• mouse click opens link in upper right window

• Alt key + mouse click opens link in lower right window

Java Persistence Perspective
Java types include application, entities, embeddables, mapped super classes, enums and ID
generators.

When clicking the Application item, content of all MANIFEST.MF files found in the source directory
and for the dependencies is displayed.

The lists of embeddables and mapped super classes can have duplicate entries because an
embeddable could be embedded in more than one entity and mapped super classes can be the
parent of more than one entity. Therefore it is mentioned, which entity is embedding an
embeddable or is a child of a mapped super class.

Regarding the Enums, only classes that have relevance for persistence are displayed. The details of
an enum are simple: it’s just the enum description and the names, ordinal numbers and
descriptions of the enum values.

The details of entities, embeddables and mapped super classes include the class hierarchy, the
respective main table (or tables if secondary tables are defined) and the names, java types,
descriptions, the mapped tables and column definitions and additional properties of the class
attributes.

Columns [Name], [Type] and [Description] are self-explaining but columns [Properties] and
[Table/Column] need some explanation. In order to fully understand the meanings of these columns
a good understanding of the Java Persistence API is necessary.

The following attribute properties are listed optionally in column [Properties]:

Japedo User Manual v 2.0 6

Attribute property Description

ID This attribute is the unique id of the entity. Normally it is
mapped to a primary key column in the database. An entity
could have more than one ID attribute.

Generation type The mode how ID attributes and corresponding columns are
set. The following types exist:

• IDENTITY: Indicates that the value is set using a database
identity column

• SEQUENCE: Indicates that the value is set using a database
sequence. A link to the sequence is provided

• TABLE: Indicates that the value is set using an underlying
database table to ensure uniqueness. A link to the table is
provided

• AUTO: Indicates that the persistence provider should pick
an appropriate strategy for the particular database.

• CODE: Indicates that the application is responsible to set a
unique value.

Replicated from super class Indicates that an ID column is replicated from a super class
when the inheritance strategy id JOINED and no discriminator
column is defined. In this case, JPA expects a primary key
column in the child class which contains the same value as the
primary key column of the super class. The primary key
column in the child class has no corresponding attribute in the
entity.

Version Specifies the attribute of an entity class that serves as its
optimistic lock value. The version is used to ensure integrity
when performing the merge operation and for optimistic
concurrency control.

Enum as STRING/ORDINAL Defines for attributes of type Enum if the corresponding
column contains the name or the ordinal number of the Enum

Temporal as DATE/TIME/TIMESTAMP Defines for attributes of type Date if the corresponding column
contains date, time or timestamp values.

Discriminator values Specifies the possible values of a discriminator column for the
SINGLE_TABLE and JOINED inheritance strategies. The
discriminator column has no corresponding attribute in the
entity.

7 Japedo User Manual v 2.0

Attribute property Description

Relation Defines the relation type when the attribute type is a list or
map. The following relation types are possible:

• n:m is a many to many relation

• n:1 is a many to one relation

• 1:n is a one to many relation

• 1:1 is a one to one relation

• List is a relation to a list of instances of a basic type or
embeddable class.

• Map is a relation to map of instances of a basic type,
embeddable or entity class as keys and/or values

Mapped by Specifies that the relation described in the [Table/Column]
column is derived from the target entity specified in the [Type]
column. The target entity is the owner of the relation.

Fetch type Specifies the strategy for fetching data from the database,
mostly relevant for relations. EAGER means the attribute values
are loaded together with the parent entity. LAZY means the
values are loaded only when they are first accessed in the
application.

Cascading Defines the cascadable operations that are propagated to the
associated entity(s) in a relation-type attribute. Possible values
are PERSIST, MERGE, REMOVE, REFRESH, DETACH

Not optional Defines that the relation is not optional. A non-null relationship
must always exist. If not specified, the relation is optional.

The [Table/Column] column contains the defined column name of an attribute. If the column is not
in the main table of the entity, the table is additionally specified. A column may not be in the main
table in three cases:

• The column is in a parent class of the entity

• A secondary table is defined for the entity and the column is in a secondary table.

• The attribute is a relation

While the first two cases are easy to understand, the third case needs more explanation:

1:1 relations

This type of relation could be mapped to different database implementations:

• Join table: The join table contains a column that references the owner entity of the relation
and a column referencing the target entity. The [Table/Column] column specifies both these
columns and the referencing columns in owner and target entities.

• Foreign key: The foreign key column is in the table of the relation owner. The

Japedo User Manual v 2.0 8

[Table/Column] column specifies this column and which column it references in the target
entity

• Shared primary key: The primary key of the owner entity is also the foreign key to the
target entity. The [Table/Column] column specifies the same column name as the ID attribute
referring to the primary key column of the target entity.

n:1 relations

In this kind of relations, the foreign key is on the owning side of the relationship which is
normally the n side. The [Table/Column] column specifies the column representing the foreign
key and which column it references in the target entity. Same as with a 1:1 relationship, a shared
primary key could be used.

n:m relations

Many to many relations have always a join table containing a column that references the owner
entity of the relation and a column referencing the target entity. The [Table/Column] column
specifies both these columns and the referencing columns in owner and target entities. n:m
relations with a map as type are special and described below.

1:n relations

Such relations could be implemented with

• A foreign key column in the table of the target entity. The [Table/Column] column specifies
the column representing the foreign key and which column it references in the table of the
owning entity

• A join table where the [Table/Column] column specifies both the foreign key columns and the
referencing columns in owner and target entities. 1:m relations with a map as type are
special and described below.

List relations

List relations are lists of either a basic type or an Embeddable. Both cases are implemented
using a join table. In the first case the [Table/Column] column specifies the column in the join
table that refers to the primary key of the owning entity and the column that contains the basic
type. When the list type is an Embeddable, the [Table/Column] column specifies only the column
in the join table that refers to the primary key of the owning entity. When the attribute row is
expanded by clicking the plus sign, the [Table/Column] column displays the column names for
each attribute of the Embeddable.

Map relations

Relations that have in the [Type] column a map as Java type can be of type Map, 1:n or n:m. In
the first case, the map value is of a basic type or an Embeddable. 1:n and n:m maps have an
Entity as map value. The map key can in any case be of a basic type, an Embeddable, an Enum or
an Entity. Such relations are implemented using a join table or by using foreign key columns in
the table of the target entity. The [Table/Column] column for map relations specifies mostly three
columns:

• The foreign key to the owner of the relationship referencing the primary key column of the
owner entity

9 Japedo User Manual v 2.0

• A key column that holds the map key, labeled with ‘Key’. This column could be a foreign key
if the map key is an entity. If the map key is an embeddable, the [Table/Column] column lists
the columns for all attributes of the embeddable as keys.

• A value column that holds the map value, labeled with ‘Value’. This column could be a
foreign key if the map value is a (target) entity. If the map value is a (target) entity and the
relation is mapped to the entity table instead of a join table, the [Table/Column] column does
not contain a value column.

Ordering

OneToMany, ManyToMany and element collection relations can specify an ordering column that
is used to maintain the persistent order of a list. The persistence provider is responsible for
maintaining the order upon retrieval and in the database. The order column has no
corresponding attribute in the entity. In the [Table/Column] column an optional order column is
noted with label ‘Ordered by’.

Persistence Units

The dependencies are scanned for persistence.xml files and the persistence units are extracted
and listed under the JPA types. The details of a persistence unit includes all properties and a list
of the effective jpa classes that are managed by this persistence unit. The set of persistence
classes that are managed by a persistence unit is defined by using one or more of the following:

• Annotated persistence classes contained in the root of the persistence unit if the exclude-
unlisted-classes property is false (default is true). The source of these classes is marked with
'(implicit)'

• One or more object/relational mapping XML files (<mapping-file> property)

• One or more jar files that will be searched for annotated classes (<jar-file> property)

• An explicit list of classes (<class> property)

The set of effective classes managed by the persistence unit is the union of these sources. In the
details of a JPA type it is listed which persistence units manage this type.

Database Perspective
The database scheme perspective includes some general database properties, tables, views, their
indexes and constraints and sequences. We distinguish three types of tables and views:

• Domain Object Tables/Views: map directly to a JPA entity or embeddable. The attributes of the
entity or embeddable are mapped to the columns of the table. It is possible that multiple entities
map to the same table, for example the members of an entity hierarchy with a single-table
inheritance strategy. The mapping entities are listed under ‘Mapping Entities’

• Association Tables: map to an association between JPA entities or embeddables that use a join
table. The participating entities are listed under ‘Associating Entities’

• Utility Tables/Views: do not map to a JPA entity. They serve other purposes like providing non-
normalized views for optimized database queries or managing unique identifier generation.

For each table/view the columns, indexes and constraints are listed with their corresponding

Japedo User Manual v 2.0 10

properties. The settings for Delete and Update Rule of foreign key constraints need maybe some
explanation. They define what happens to the foreign key when the referenced primary key in the
referenced table is deleted or updated.

• NO ACTION: Delete and Update not allowed. Error message is generated.

• CASCADE: Foreign key row is also deleted or updated

• SET NULL: Foreign key is set to null

• SET DEFAULT: Foreign key is set to its default value. The primary key in the referenced table
should also have a default value for this option.

Design Perspective
Even if already about 20 years old, the concept of domain driven design (DDD) by Eric Evans is still
popular in the world of microservices and modular components. Many applications are more or
less designed following the principles of bounded contexts, entity and value objects and applying a
ubiquitous language for naming models. The design perspective tries to give an idea of the
application’s design and architecture making use of principles of DDD though the application must
not necessarily be built on those concepts. It is meant for designers and software architects who are
interested in the overall conception of the business domain. Also for those who know the business,
the requirements, the customers, the business rules and processes but lack the technical
background this perspective reveals valuable insight. In this category may fall for example project
managers, project owners, business analysts and business delivery.

This perspective uses the following assumptions:

• JPA entities correspond to DDD entities and represent the business domain objects

• all entities in a Java package belong to the same domain or sub-domain. The opposite is not
necessarily given: a domain could be defined by more than one package.

By default, the package name is used as the domain name. This could be changed either to give it a
more speaking name or to combine several packages in the same domain: In the package, add a
package-info.java file and add in the JavaDoc comment a line with

Domain: "your domain name"

The design perspective presents the entity objects in the sense of DDD. The emphasis lies on the
non-technical view of the business domain that is presented by the persistence objects. Only a
minimum of technical details is shown and the domain information concentrates on the important
domain objects, their attributes, types, descriptions and the relations between them. Please note the
following explanations:

• Only JPA entities and their corresponding tables present business domain objects

• The business domain object name corresponds to the JPA entity name in upper case.

• JPA embeddables are technical implementations and their attributes are presented flattened
within the business domain objects

11 Japedo User Manual v 2.0

• JPA mapped super classes are as well technical implementations and are directly incorporated
in the domain objects

• The attribute names correspond to the JPA attribute names in upper case.

• The attribute types are presented as pseudo-types in order to keep it simple and technology
agnostic. The pseudo-types are: alphanumeric, numeric, date, time, timestamp, boolean, binary,
list and map.

• Discriminator and inherited id columns are technical implementations and not displayed

• All other technical implementation details have been omitted. The business domain object
representations have a direct link to the corresponding JPA entities and database tables where
these details can be found.

Graphical Representations
Each detail view of a table or JPA types includes a graphical representation. For a table the tables
related by a foreign key constraint are also displayed. For JPA types, the class hierarchy and the
directly associated JPA entities and Enum types are displayed. Clicking on a table or entity title with
mouse click or Alt key + mouse click opens the details view of the item.

The application and database overview diagrams include in addition the graphical representation
of the complete persistence layer and database structure. These graphics can be zoomed and
panned. For the overview diagrams there is a button to display a rectangle which can be used to
magnify parts of the diagram. The size and scaling of the rectangle can be modified and it can be
dragged around with the mouse. The part of the diagram outlined by the rectangle can be cut (use
the Alt key to display the cut part in the lower window). The cut diagram sections can then be
downloaded. The following overall diagrams are shown:

• entity diagram: all JPA entities, embeddables and mapped super classes and their relations

• table diagram: all database tables and their relations through foreign key constraints

• domain diagram: displays all domains and the containing domain objects (only premium
version)

• Entity/Table Mappings: combines entity and table diagrams and displays the linkage between
them (only premium version)

• Domain object/Table diagram: combines domain objects and tables and displays the linkage
between them (only premium version)

• Domain object/Entity diagram: combines domain objects and entities and displays the linkage
between them (only premium version)

Linking database and JPA artefacts
The complete picture of application persistence is obtained when database properties are studied
together with corresponding domain object and JPA properties. For this purpose, table columns can
be directly linked with JPA entity and domain object attributes. The three types are distinguished by
their colors:

Japedo User Manual v 2.0 12

• link with JPA attribute

• link with domain object attribute

• link with database column

Linking database columns with corresponding entity attributes is the most complicated linkage
because it is a 1 to 0..n relationship. A column can have zero, one or many links to entity attributes.

The default case is visible in the example application with table CIB_CONTROLLABLE: When
clicking the link icon of a column, it is highlighted together with its corresponding entity attribute.
This is the one-to-one relationship.

One example of a one-to-many relationship can be seen in table CIB_ARCHIVE: When clicking the
link icon of column ARCHIVEID, two attributes of the Archive entity are highlighted. This is because
the primary key of Archive is at the same time the foreign key to the Resource entity which is
mandated by the @PrimaryKeyJoinColumn annotation.

Another example of a one-to-many relationship is in table BOOK2: When clicking the link on
column ID, two lines in the Book2 entity are highlighted. The primary key column from table
PUBLICATION is duplicated in table BOOK2 because the inheritance strategy is JOINED. In the
entity, however the attribute is not duplicated.

There are many other situations, where one column is mapped to multiple entity attributes, for
example:

• Parent – child relationships (column CIB_EVENTRESULT.PARENTRESULT_ID)

• Part of an composite primary key is a foreign key (annotation @MapsId) ((column
DEPENDENT.EMP_ID)

• Multiple relations maintained in the same association table (column
MANYTOMANY1_MANYTOMANY2.MANYTOMANY1_ID1)

• Object inheritance (CIB_REQUEST)

The last point needs some more explanations: When an entity hierarchy is mapped to a single table
(InheritanceType = SINGLE_TABLE) the columns of this table can be mapped to the different
entities in this hierarchy. When clicking the link icon, the entity must therefore be selected to which
the column shall be mapped. In this case, a dialog pops up which lists the possible entities which
map the column. The entity can also be selected before clicking the link icon from the table’s list of
mapped or associated entities.

Some columns do not have a corresponding entity attribute. This is the case for example for
columns of utility tables like a table for generating sequences. Order columns of one-to-many
relations (annotation @OrderColumn) also do not have a relation to an attribute.

The mapping from Jpa attributes to the corresponding columns is a 1 to 1..n relationship. The
normal mapping is that an attribute maps to one column. In case of an attribute that represents an
entity association which is mapped in an association table, both foreign key columns are mapped to
that attribute. When an entity defines an order column (annotation @OrderColumn) for a
Collection-type attribute, the order column is also mapped to that attribute. Another example for a
1 to n mapping is for attributes of Map type. In this case the foreign key column, the map value

13 Japedo User Manual v 2.0

column and the map key column are mapped to that attribute if they are all in the same table.

Issue Report
Japedo can detect errors, mismatches between Java implementation and database, non-
compliances to the JPA specification and many other flaws and disregards of common persistence
rules and conventions. These are listed in the issue report with CRITICAL, MAJOR and MINOR error
level. BLOCKER issues prevent Japedo from execution and are listed already in the execution log.
The issue message contains links to the Java class or database table that produced the issue. The
details view of the listed issues contain a more detailed explanation and a possible solution to the
problem.

Issues that will not be fixed or are false-positives can be ignored so that they do not appear
anymore on the issue report. To achieve this, set the unique issue number in property
'ignoredIssues' of the configuration file.

Comparing databases and applications
If more than one application is configured in japedoConfig.xml or in the Maven plugin Japedo
compares the different databases and Java applications. An application can be a specific
deployment installation of an application, for example in production and test environment or a
specific release version of an application. With the Japedo Maven plugin the application version
can be configured and the version is downloaded from the distribution repository. It is also possible
to configure only databases or only sources in a application, then only the databases or sources are
compared.

After execution of the Japedo analysis, the compare functionality can be accessed from the main
menu of the generated html page. The compare page displays differences for database and Java
source separately. For database differences, the table and column/constraint/index where a
difference has been detected are listed. If a table/column/constraint/index is present in one
database scheme and not in the other the entry lists where it is present and where not. The column
'Modified property' is empty in this case. If a property of a table/column/constraint/index differs,
the column 'Modified property' is set and the entry lists the different properties.

Similarly the differences in the Java sources are listed with information about classes and class
attributes present or not and the differing values of class or attribute properties.

Japedo User Manual v 2.0 14

	Japedo
	Table of Contents
	Overview
	Setup
	Japedo Maven Plugin
	Configuration properties

	Logging
	Representation and Navigation
	Java Persistence Perspective
	Database Perspective
	Design Perspective
	Graphical Representations
	Linking database and JPA artefacts
	Issue Report
	Comparing databases and applications

